python实现信息熵的计算代码

Python (157) 2023-05-19 22:08:13

1、什么是信息熵?

1948年香农提出了信息熵(Entropy)的概念。

信息理论:

1、从信息的完整性上进行的描述:

当系统的有序状态一致时,数据越集中的地方熵值越小,数据越分散的地方熵值越大。

2、从信息的有序性上进行的描述:

当数据量一致时,系统越有序,熵值越低;系统越混乱或者分散,熵值越高。

“信息熵” (information entropy)是度量样本集合纯度最常用的一种指标。

二、python实现信息熵的计算代码

1、导入库

importnumpyasnp
importpandasaspd

2、 准备数据

data=pd.DataFrame(
{'学历':['专科','专科','专科','专科','专科','本科','本科','本科','本科','本科',
'研究生','研究生','研究生','研究生','研究生'],
'婚否':['否','否','是','是','否','否','否','是','否','否','否','否','是','是','否'],
'是否有车':['否','否','否','是','否','否','否','是','是','是','是','是','否','否',
'否'],
'收入水平':['中','高','高','中','中','中','高','高','很高','很高','很高','高','高',
'很高','中'],
'类别':['否','否','是','是','否','否','否','是','是','是','是','是','是','是','否']})

3、定义信息熵函数

#定义计算信息熵的函数:计算Infor(D)
definfor(data):
a=pd.value_counts(data)/len(data)
returnsum(np.log2(a)*a*(-1))

4、数据测试

#print(infor(data["学历"]))#测试结果为:1.584962500721156
THE END

发表回复