作为python中可以计算高等数学库scipy中,scipy.linalg用于计算线性代数,扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。如果想要计算方阵的行列式,可以使用scipy.linalg.det()方法,可以轻松的获取方阵的行列式,本文介绍python中使用scipy.linalg模块计算矩阵的行列式的过程。
1、scipy.linalg.det()计算方阵的行列式格式
print('Det:',lg.det(arr))#求矩阵arr的行列式
2、使用scipy.linalg.det()计算方阵的行列式实例
In[22]:fromscipyimportlinalg In[23]:arr=np.array([[1,2], ....:[3,4]]) In[24]:linalg.det(arr) Out[24]:-2.0 In[25]:linalg.det(np.ones((3,4))) --------------------------------------------------------------------------- ValueErrorTraceback(mostrecentcalllast) <ipython-input-25-375ad1d49940>in<module>() ---->1linalg.det(np.ones((3,4))) /usr/lib/python2.7/site-packages/scipy/linalg/basic.pycindet(a,overwrite_a) 398a1=np.asarray_chkfinite(a) 399iflen(a1.shape)!=2ora1.shape[0]!=a1.shape[1]: -->400raiseValueError('expectedsquarematrix') 401overwrite_a=overwrite_aor_datacopied(a1,a) 402fdet,=get_flinalg_funcs(('det',),(a1,)) ValueError:expectedsquarematrix py.linalg.inv()
以上就是python中使用scipy.linalg模块计算矩阵的行列式的过程,希望能对你有所帮助哟~更多python高级教程:python高级教程。
下一篇